首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5160篇
  免费   357篇
  国内免费   4篇
  2023年   17篇
  2022年   12篇
  2021年   97篇
  2020年   71篇
  2019年   106篇
  2018年   160篇
  2017年   117篇
  2016年   196篇
  2015年   340篇
  2014年   376篇
  2013年   401篇
  2012年   485篇
  2011年   434篇
  2010年   290篇
  2009年   275篇
  2008年   350篇
  2007年   323篇
  2006年   267篇
  2005年   233篇
  2004年   248篇
  2003年   208篇
  2002年   167篇
  2001年   46篇
  2000年   44篇
  1999年   50篇
  1998年   27篇
  1997年   25篇
  1996年   30篇
  1995年   25篇
  1994年   19篇
  1993年   13篇
  1992年   7篇
  1991年   7篇
  1990年   5篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   2篇
  1985年   5篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   2篇
  1980年   4篇
  1978年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1959年   1篇
  1932年   1篇
排序方式: 共有5521条查询结果,搜索用时 0 毫秒
101.
102.
The rapid melting of glaciers as well as the loss of sea ice in the Amundsen Sea makes it an ideal environmental setting for the investigation of the impacts of climate change in the Antarctic on the distribution and production of mesozooplankton. We examined the latitudinal distribution of mesozooplankton and their grazing impacts on phytoplankton in the Amundsen Sea during the early austral summer from December 27, 2010 to January 13, 2011. Mesozooplankton followed a latitudinal distribution in relation to hydrographic and environmental features, with copepods dominating in the oceanic area and euphausiids dominating in the polynya. Greater Euphausia crystallorophias biomass in the polynya was associated with lower salinity and higher food concentration (chlorophyll a, choanoflagellates, and heterotrophic dinoflagellates). The grazing impact of three copepods (Rhincalanus gigas, Calanoides acutus, and Metridia gerlachei) on phytoplankton was low, with the consumption of 3 % of phytoplankton standing stock and about 4 % of daily primary production. Estimated daily carbon rations for each of the three copepods were also relatively low (<10 %), barely enough to cover metabolic demands. This suggests that copepods may rely on food other than phytoplankton and that much of the primary production is channeled through microzooplankton. Daily carbon rations for E. crystallorophias were high (up to 49 %) with the grazing impact accounting for 17 % of the phytoplankton biomass and 84 % of primary production. The presence of E. crystallorophias appears to be a critical factor regulating phytoplankton blooms and determining the fate of fixed carbon in the coastal polynyas of the Amundsen Sea.  相似文献   
103.
Gastrokine 1 (GKN1) plays an important role in the gastric mucosal defense mechanism and also acts as a functional gastric tumor suppressor. In this study, we examined the effect of GKN1 on the expression of inflammatory mediators, including NF‐κB, COX‐2, and cytokines in GKN1‐transfected AGS cells and shGKN1‐transfected HFE‐145 cells. Lymphocyte migration and cell viability were also analyzed after treatment with GKN1 and inflammatory cytokines in AGS cells by transwell chemotaxis and an MTT assay, respectively. In GKN1‐transfected AGS cells, we observed inactivation and reduced expression of NF‐κB and COX‐2, whereas shGKN1‐transfected HFE‐145 cells showed activation and increased expression of NF‐κB and COX‐2. GKN1 expression induced production of inflammatory cytokines including IL‐8 and ‐17A, but decreased expression of IL‐6 and ‐10. We also found IL‐17A expression in 9 (13.6%) out of 166 gastric cancer tissues and its expression was closely associated with GKN1 expression. GKN1 also acted as a chemoattractant for the migration of Jurkat T cells and peripheral B lymphocytes in the transwell assay. In addition, GKN1 significantly reduced cell viability in both AGS and HFE‐145 cells. These data suggest that the GKN1 gene may inhibit progression of gastric epithelial cells to cancer cells by regulating NF‐κB signaling pathway and cytokine expression. J. Cell. Biochem. 114: 1800–1809, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
104.
Chinese hamster ovary (CHO) cells, that are widely used for production of therapeutic proteins, are subjected to apoptosis and autophagy under the stresses induced by conditions such as nutrient deprivation, hyperosmolality and addition of sodium butyrate. To achieve a cost-effective level of production, it is important to extend the culture longevity. Until now, there have been numerous studies in which apoptosis of recombinant CHO (rCHO) cells was inhibited, resulting in enhanced production of therapeutic proteins. Recently, autophagy in rCHO cells has drawn attention because it can be genetically and chemically controlled to increase cell survival and productivity. Autophagy is a global catabolic process which involves multiple pathways and genes that regulate the lysosomal degradation of intracellular components. A simultaneous targeting of anti-apoptosis and pro-autophagy could lead to more efficient protection of cells from stressful culture conditions. In this regard, it is worthwhile to have a detailed understanding of the autophagic pathway, in order to select appropriate genes and chemical targets to manage autophagy in rCHO cells, and thus to enhance the production of therapeutic proteins.  相似文献   
105.
Microbial-surface display is the expression of proteins or peptides on the surface of cells by fusing an appropriate protein as an anchoring motif. Here, the outer membrane protein W (OmpW) was selected as a fusion partner for functional expression of Pseudomonas fluorescence SIK W1 lipase (TliA) on the cell-surface of Escherichia coli. Localization of the truncated OmpW-TliA fusion protein on the cell-surface was confirmed by immunoblotting and functional assay of lipase activity. Enantioselective hydrolysis of rac-phenylethyl butanoate by the displayed lipase resulted in optically active (R)-phenyl ethanol with 96 % enantiomeric excess and 44 % of conversion in 5 days. Thus, a small outer membrane protein OmpW, is a useful anchoring motif for displaying an active enzyme of ~50 kDa on the cell-surface and the surface-displayed lipase can be employed as an enantioselective biocatalyst in organic synthesis.  相似文献   
106.
107.
Radioresistance is a major cause of decreasing the efficiency of radiotherapy for non-small cell lung cancer (NSCLC). To understand the radioresistance mechanisms in NSCLC, we focused on the radiation-induced Notch-1 signaling pathway involved in critical cell fate decisions by modulating cell proliferation. In this study, we investigated the use of Notch-1-regulating flavonoid compounds as novel therapeutic drugs to regulate radiosensitivity in NSCLC cells, NCI-H1299 and NCI-H460, with different levels of radioresistance. Rhamnetin and cirsiliol were selected as candidate Notch-1-regulating radiosensitizers based on the results of assay screening for activity and pharmacological properties. Treatment with rhamnetin or cirsiliol reduced the proliferation of NSCLC cells through the suppression of radiation-induced Notch-1 expression. Indeed, rhamnetin and cirsiliol increased the expression of tumor-suppressive microRNA, miR-34a, in a p53-dependent manner, leading to inhibition of Notch-1 expression. Consequently, reduced Notch-1 expression promoted apoptosis through significant down-regulation of the nuclear factor-κB pathway, resulting in a radiosensitizing effect on NSCLC cells. Irradiation-induced epithelial-mesenchymal transition was also notably attenuated in the presence of rhamnetin and cirsiliol. Moreover, an in vivo xenograft mouse model confirmed the radiosensitizing and epithelial-mesenchymal transition inhibition effects of rhamnetin and cirsiliol we observed in vitro. In these mice, tumor volume was significantly reduced by combinational treatment with irradiation and rhamnetin or cirsiliol compared with irradiation alone. Taken together, our findings provided evidence that rhamnetin and cirsiliol can act as promising radiosensitizers that enhance the radiotherapeutic efficacy by inhibiting radiation-induced Notch-1 signaling associated with radioresistance possibly via miR-34a-mediated pathways.  相似文献   
108.
109.
The sulfonylurea receptor 1 (Sur1)-NCCa-ATP channel plays a central role in necrotic cell death in central nervous system (CNS) injury, including ischemic stroke, and traumatic brain and spinal cord injury. Here, we show that Sur1-NCCa-ATP channels are formed by co-assembly of Sur1 and transient receptor potential melastatin 4 (Trpm4). Co-expression of Sur1 and Trpm4 yielded Sur1-Trpm4 heteromers, as shown in experiments with Förster resonance energy transfer (FRET) and co-immunoprecipitation. Co-expression of Sur1 and Trpm4 also yielded functional Sur1-Trpm4 channels with biophysical properties of Trpm4 and pharmacological properties of Sur1. Co-assembly with Sur1 doubled the affinity of Trpm4 for calmodulin and doubled its sensitivity to intracellular calcium. Experiments with FRET and co-immunoprecipitation showed de novo appearance of Sur1-Trpm4 heteromers after spinal cord injury in rats. Our findings depart from the long-held view of an exclusive association between Sur1 and KATP channels and reveal an unexpected molecular partnership with far-ranging implications for CNS injury.  相似文献   
110.
The serine-rich repeat glycoproteins of Gram-positive bacteria comprise a large family of cell wall proteins. Streptococcus agalactiae (group B streptococcus, GBS) expresses either Srr1 or Srr2 on its surface, depending on the strain. Srr1 has recently been shown to bind fibrinogen, and this interaction contributes to the pathogenesis of GBS meningitis. Although strains expressing Srr2 appear to be hypervirulent, no ligand for this adhesin has been described. We now demonstrate that Srr2 also binds human fibrinogen and that this interaction promotes GBS attachment to endothelial cells. Recombinant Srr1 and Srr2 bound fibrinogen in vitro, with affinities of KD = 2.1 × 10−5 and 3.7 × 10−6 m, respectively, as measured by surface plasmon resonance spectroscopy. The binding site for Srr1 and Srr2 was localized to tandem repeats 6–8 of the fibrinogen Aα chain. The structures of both the Srr1 and Srr2 binding regions were determined and, in combination with mutagenesis studies, suggest that both Srr1 and Srr2 interact with a segment of these repeats via a “dock, lock, and latch” mechanism. Moreover, properties of the latch region may account for the increased affinity between Srr2 and fibrinogen. Together, these studies identify how greater affinity of Srr2 for fibrinogen may contribute to the increased virulence associated with Srr2-expressing strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号